Package: heumilkr (via r-universe)

August 29, 2024

Title Heuristic Capacitated Vehicle Routing Problem Solver

Version 0.2.0.9000

Description Implements the Clarke-Wright algorithm to find a quasi-optimal solution to the Capacitated Vehicle Routing Problem. See Clarke, G. and Wright, J.R. (1964)
 <doi:10.1287/opre.12.4.568> for details. The implementation is accompanied by helper functions to inspect its solution.

License GPL (>= 3)

Encoding UTF-8

Roxygen list(markdown = TRUE)

RoxygenNote 7.3.1

LinkingTo cpp11

SystemRequirements C++17

URL https://github.com/lschneiderbauer/heumilkr,

https://lschneiderbauer.github.io/heumilkr/

BugReports https://github.com/lschneiderbauer/heumilkr/issues

Imports rlang (>= 1.1.0), cli (>= 3.6.0), xml2 (>= 1.3.0), ggplot2 (>= 3.4.0)

Suggests testthat (>= 3.0.0), hedgehog (>= 0.1), curl (>= 5.2.0), ggExtra (>= 0.10.0), scales (>= 1.3.0), knitr, rmarkdown

Config/testthat/edition 3

Depends R (>= 3.5.0)

LazyData true

VignetteBuilder knitr

Repository https://lschneiderbauer.r-universe.dev

RemoteUrl https://github.com/lschneiderbauer/heumilkr

RemoteRef HEAD

RemoteSha fd1f5e571ba4a4645baff5af94ce2f5e91722be2

Contents

clarke_wright	2
clarke_wright_cvrplib	4
cvrplib_A	4
cvrplib_B	5
cvrplib_download	5
cvrplib_E	6
cvrplib_F	6
cvrplib_ls	7
cvrplib_Tai	7
milkr_cost	8
milkr_saving	8
	10

Index

```
clarke_wright
```

Clarke-Wright algorithm, a Capacitated Vehicle Routing Problem solver

Description

Finds a quasi-optimal solution to the Capacitated Vehicle Routing Problem (CVRP). It is assumed that all demands will be satisfied by a single source.

Usage

```
clarke_wright(demand, distances, vehicles, restrictions = NULL)
```

Arguments

demand	A numeric vector consisting of "demands" indexed by sites. The ith entry refers to the demand of site i (and the length of the vector equals the number of sites N with demands). The units of demand values need to match the units of vehicle capacity values. NA values are not allowed.
distances	An object of class dist, created by stats::dist(), with (N + 1) locations describing the distances between individual sites. The first index refers to the source site. The (i+1)th index refers to site i (as defined by demand).
vehicles	A data.frame() describing available vehicle types and their respective capaci- ties. One row per vehicle type. The data frame is expected to have two columns:
	• n - Number of available vehicles. This can be set to NA if the number is "in- finite" (i.e. effectively the maximal integer value on your machine.). It is recommended to keep at least one vehicle type as "infinite", otherwise the solver might raise a run time error due to initially not having enough vehi- cles available (even though the final solution might satisfy the availability restrictions).

• caps - The vehicle capacity in same units as demand.

cles should be further down in the list (so the cheaper one is chosen in there is doubt). Since higher capacity vehicles usually involve higher costs ng the data frame by capacity is usually a good rule of thumb.
optional data.frame() that allows to define vehicle type restrictions for cular sites in the form of a blacklist. The data frame is expected to have two mns:
vehicle - The vehicle type index. site - The site index (i.e. the index of the demand vector) row defines a restriction: vehicle type vehicle can not approach site site. ults to NULL, i.e. no restrictions are enforced.

Details

See the original paper, Clarke, G. and Wright, J.R. (1964) doi:10.1287/opre.12.4.568, for a detailed explanation of the Clarke-Wright algorithm.

Value

Returns a "heumilkr_solution" object, a data.frame() with one row per site-run combination bestowed with additional attributes. Its columns consist of:

- site The site index (i.e. the index of the demand vector) associated to the run.
- run Identifies the run the site is assigned to.
- order Integer values providing the visiting order within each run.
- vehicle The vehicle type index (as provided in vehicles) associated to the run.
- load The actual load in units of demand on the particular run.
- distance The travel distance of the particular run.

Unless a site demand exceeds the vehicle capacities it is always assigned to only a single run.

Examples

```
demand <- c(3, 2, 4, 2)
positions <-
    data.frame(
        pos_x = c(0, 1, -1, 2, 3),
        pos_y = c(0, 1, 1, 2, 3)
    )
clarke_wright(
    demand,
    dist(positions),
    data.frame(n = NA_integer_, caps = 6)
)</pre>
```

clarke_wright_cvrplib Applying clarke_wright() to CVRPLIB data

Description

Applying clarke_wright() to CVRPLIB data

Usage

clarke_wright_cvrplib(instance)

Arguments

instance A "heumilkr_solution". See cvrplib_download() or bundled CVRPLIB data like cvrplib_A.

Value

A "heumilkr_solution" object. See clarke_wright().

See Also

Other cvrplib: cvrplib_download(), cvrplib_ls()

cvrplib_A CVRP instance data by Augerat, 1995

Description

A collection of CVRP instances by Augerat, 1995, provided courtesy of CVRPLIB. See CVRPLIB for visualizations of the instances and their solutions as well as a multitude of alternative instance data.

Usage

cvrplib_A

Format

cvrplib_A:

A list of CVRP instances as "cvrplib_instance" objects. The instances can be directly fed into solver algorithm, e.g. via clarke_wright_cvrplib().

Source

http://vrp.atd-lab.inf.puc-rio.br

cvrplib_B

Description

A collection of CVRP instances by Augerat, 1995, provided courtesy of CVRPLIB. See CVRPLIB for visualizations of the instances and their solutions as well as a multitude of alternative instance data.

Usage

cvrplib_B

Format

cvrplib_B:

A list of CVRP instances as "cvrplib_instance" objects. The instances can be directly fed into solver algorithm, e.g. via clarke_wright_cvrplib().

Source

http://vrp.atd-lab.inf.puc-rio.br

cvrplib_download CVRPLIB problem instance downloader

Description

CVRLIB offers a selection of CVRP problem instances. This function downloads the instance data and conveniently makes it available to be fed into solver functions, e.g. with clarke_wright_cvrplib(). The primary purpose for those instances is benchmarking / comparing speed as well as performance of solvers.

Usage

```
cvrplib_download(qualifier)
```

Arguments

qualifier The qualifier of the problem instance. E.g. "tai/tai150d". This can either be inferred directly from the website or by the output of cvrplib_ls().

Value

Returns a "cvrplib_instance" object which contains CVRPLIB problem instance data.

See Also

Other cvrplib: clarke_wright_cvrplib(), cvrplib_ls()

cvrplib_E

CVRP instance data by Christofides and Eilon, 1969

Description

A collection of CVRP instances by Christofides and Eilon, 1969, provided courtesy of CVRPLIB. See CVRPLIB for visualizations of the instances and their solutions as well as a multitude of alternative instance data.

Usage

cvrplib_E

Format

cvrplib_E:

A list of CVRP instances as "cvrplib_instance" objects. The instances can be directly fed into solver algorithm, e.g. via clarke_wright_cvrplib().

Source

http://vrp.atd-lab.inf.puc-rio.br

cvrplib_F CVRP instance data by Fisher, 1994

Description

A collection of CVRP instances by Fisher, 1994, provided courtesy of CVRPLIB. See CVRPLIB for visualizations of the instances and their solutions as well as a multitude of alternative instance data.

Usage

cvrplib_F

Format

cvrplib_F:

A list of CVRP instances as "cvrplib_instance" objects. The instances can be directly fed into solver algorithm, e.g. via clarke_wright_cvrplib().

Source

http://vrp.atd-lab.inf.puc-rio.br

6

cvrplib_ls

Description

Scrapes the CVRPLIB website to look for available data sets. This function call can take some time.

Usage

```
cvrplib_ls()
```

Value

A vector of data set qualifiers which can be used with cvrplib_download().

See Also

Other cvrplib: clarke_wright_cvrplib(), cvrplib_download()

cvrplib_Tai

CVRP instance data by Rochat and Taillard, 1995

Description

A collection of CVRP instances by Rochat and Taillard, 1995, provided courtesy of CVRPLIB. See CVRPLIB for visualizations of the instances and their solutions as well as a multitude of alternative instance data.

Usage

cvrplib_Tai

Format

```
cvrplib_Tai:
```

A list of CVRP instances as "cvrplib_instance" objects. The instances can be directly fed into solver algorithm, e.g. via clarke_wright_cvrplib().

Source

http://vrp.atd-lab.inf.puc-rio.br

milkr_cost

Description

Calculates the total distance associated to a clarke_wright() result. This is the measure that the corresponding Capacitated Vehicle Routing Problem minimizes.

Usage

```
milkr_cost(solution)
```

Arguments

solution A "heumilkr_solution" object, typically obtained by clarke_wright().

Value

The total traveled distance.

Examples

```
demand <- c(3, 2, 4, 2)
positions <-
    data.frame(
        pos_x = c(0, 1, -1, 2, 3),
        pos_y = c(0, 1, 1, 2, 3)
    )
solution <- clarke_wright(
    demand,
    dist(positions),
    data.frame(n = NA_integer_, caps = 6)
)
milkr_cost(solution)</pre>
```

milkr_saving Vehicle run saving

Description

Measures the saving that was achieved by the heuristic optimization algorithm clarke_wright() compared to the naive vehicle run assignment, i.e. one run per site.

milkr_saving

Usage

milkr_saving(solution, relative = FALSE)

Arguments

solution	A "heumilkr_solution" object, typically obtained by clarke_wright().
relative	Should the saving be given as dimensionful value (in units of distance as pro- vided to clarke_wright()), or as percentage relative to the naive costs. De- faulta to 54 SE is a dimensionful value
	faults to FALSE, i.e. a dimensioniul value.

Value

The savings either as dimensionful value or as percentage relative to the naive costs, depending on relative.

Examples

```
demand <- c(3, 2, 4, 2)
positions <-
    data.frame(
        pos_x = c(0, 1, -1, 2, 3),
        pos_y = c(0, 1, 1, 2, 3)
    )
solution <- clarke_wright(
    demand,
    dist(positions),
    data.frame(n = NA_integer_, caps = 6)
)</pre>
```

```
print(milkr_saving(solution))
print(milkr_saving(solution, relative = TRUE))
```

Index

* cvrplib clarke_wright_cvrplib,4 cvrplib_download, 5 cvrplib_ls,7 * datasets cvrplib_A,4 cvrplib_B, 5 cvrplib_E,6 cvrplib_F,6 cvrplib_Tai,7 clarke_wright, 2 clarke_wright(), 4, 8, 9 clarke_wright_cvrplib, 4, 6, 7 clarke_wright_cvrplib(), 4-7 cvrplib_A, 4, 4 cvrplib_B, 5 cvrplib_download, 4, 5, 7 cvrplib_download(), 4, 7 cvrplib_E,6 cvrplib_F,6 cvrplib_ls, *4*, *6*, 7 cvrplib_ls(), 5 cvrplib_Tai,7 data.frame(), 2, 3 milkr_cost, 8 milkr_saving, 8

stats::dist(), 2